A Newton-type Method for Non-smooth Multi-objective Optimization

Sorin-Mihai Grad, Titus Pinta

March 14, 2025 Spring School and Workshop on Variational Analysis and Optimization

Main Results

Given
$$F: \mathbb{R}^m \to \mathbb{R}^n$$
, $F(x) = [f_1(x), \dots, f_n(x)]$, with Newton differentiable Jacobian (e.g. piecewise C^2),

Problem

Find

$$\underset{x \in \mathbb{R}^m}{\operatorname{argmin}} \, {}^*F(x) \tag{MOP}$$

Result

The Newton-type algorithm converges superlinearly

Outline

1. What is argmin *?

- 2. Under-determined Systems of Equations
- 3. Non-smooth Equation

4. Constraints

5. Main Result

Efficient Points

No total order on \mathbb{R}^m

1. (local) strict Pareto minimizer:

$$\forall y (\in U): F(y) \leq F(\bar{x}) \implies F(y) = F(\bar{x})$$

- 2. (local) weak Pareto minimizer: $\not\exists y (\in U)$: $F(y) < F(\bar{x})$
- 3. (local) weakly efficient $\exists \sigma \in \Delta^{n1}$, \bar{x} is a (local) minimizer of $\sigma^T F(x)$

Aim to replace (MOP) with an equation

Let
$$\sigma \in \Delta^n$$
, $G(x) = \sigma^T \nabla F(x)$ (first order scalarization)
NOT good: $F(x) = [x_1^2 - x_2, x_2]$ only one good guess for σ

 $^{^{1}\}Delta^{n} = \{x \in [0,1]^{n} \mid \mathbf{1}^{T}x = 1\}$

First Order Equation

Given
$$F: \mathbb{R}^m \to \mathbb{R}^n$$
, $F(x) = [f_1(x), \dots, f_n(x)]$, define
$$G: \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}^n, \quad G(x, \sigma) = \sigma^T \nabla F(x)$$

Problem

Find,
$$\bar{x} \in \mathbb{R}^m, \bar{\sigma} \in \Delta^n$$

$$G(\bar{x},\bar{\sigma})=0$$
 (FOE)

Under-determined Equations

Given $G: \mathbb{R}^m \to \mathbb{R}^n$ in C^1 with m > n Find, $\bar{x} \in \mathbb{R}^m$

$$G(\bar{x}) = 0$$
 (UDE)

Newton's method: linearize (UDE) and solve

$$\mathcal{A}(x) = \{ y \in \mathbb{R}^m \mid G(x) + \nabla G(x)^T (y - x) = 0 \}$$
 (EUDE)

A(x) is **not** a singelton

Under-determined Equations

We can project on A(x)

$$x^{k+1} = \mathsf{P}_{\mathcal{A}(x^k)} \, x^k$$

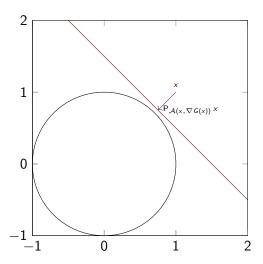
$$x^{k+1} = \underset{G(x) + \nabla G(x^k)^T (x - x^k) = 0}{\operatorname{argmin}} \|x - x^k\|^2$$

First order optimality $(\nabla G(x^k))$ full rank)

$$x^{k+1} = x^k - \nabla G(x^k)^{+2} G(x^k)$$

 $^{^{2}}H^{+}=(HH^{T})^{-1}H$

Under-determined Equations



Newton Differentiability

Definition

 $G: \mathbb{R}^m \to \mathbb{R}^n$ is pointwise Newton differentiable at \bar{x} if there is $\mathcal{H}G: \mathbb{R}^m \rightrightarrows \mathbb{R}^{n \times m}$ with

$$\lim_{x \to \bar{x}} \sup_{H \in \mathcal{HG}(x)} \frac{\|G(x) - G(\bar{x}) - H(x - \bar{x})\|}{\|x - \bar{x}\|} = 0$$

Definition

 $G: \mathbb{R}^m \to \mathbb{R}^n$ is uniformly Newton differentiable on V if there is $\mathcal{H}G: \mathbb{R}^m \rightrightarrows \mathbb{R}^{n \times m}$ such that $\forall \varepsilon > 0 \ \exists \delta, \ \forall x \in \mathbb{R}^m, \ \forall y \in V$ with $\|x - y\| \leq \delta$,

$$\sup_{H \in \mathcal{H}G(x)} \frac{\|G(x) - G(y) - H(x - y)\|}{\|x - y\|} < \varepsilon.$$

Examples

Proposition

 $G: \mathbb{R}^m \to \mathbb{R}^n$, K compact, $G \in \mathcal{C}^1(K)$, then G is uniformly Newton differentiable on K with a Newton differential $\mathcal{H}(x) := \{\nabla G(x)^T\}$

Definition

 $G: \mathbb{R}^m \to \mathbb{R}^n$ is Lipschitz uniformly semi-smooth* on V if $\forall \varepsilon > 0$ $\exists \delta$ such that $\forall x, \ \forall y \in V$ with $\|x - y\| \leq \delta$,

$$\frac{\|F'(x;x-y) - F'(y;x-y)\|}{\|x-y\|} \le \varepsilon$$

Proposition

 $G: \mathbb{R}^m \to \mathbb{R}^n$, G uniformly semi-smooth* on V, then G is uniformly Newton differentiable on V with a Newton differential $\mathcal{H}(x) := \overline{\operatorname{conv}} \left\{ H \in \mathbb{R}^{n \times m} \mid \exists \{x^k\}_{k \in \mathbb{N}}, \lim_{k \to \mathbb{N}} \nabla G(x^k)^T = H \right\}$

Non-smooth Newton

Given $G: \mathbb{R}^m \to \mathbb{R}^n$ Newton differentiable with $\mathcal{H}G$ Find, $\bar{x} \in \mathbb{R}^m$

$$G(\bar{x}) = 0$$
 (UDE)

Denote
$$\mathcal{Z} = \{x \mid G(x) = 0\}$$

Algorithm:
$$\mathcal{N}: \mathbb{R}^m \rightrightarrows \mathbb{R}^m$$
,

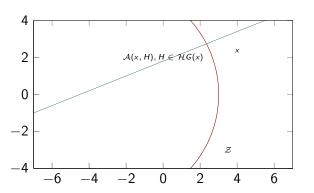
$$\mathcal{N}(x) = \{x - H^+G(x) \mid H \in \mathcal{H}G(x)\}\$$

Geometrically Compatible

Definition

 $\mathcal{H}G$ is geometrically compatible if

$$\| P_{\mathcal{A}(x,H)} x - P_{\mathcal{Z}} P_{\mathcal{A}(x,H)} x \| \le P \| P_{\mathcal{Z}} P_{\mathcal{A}(x,H)} x - P_{\mathcal{A}(x,H)} P_{\mathcal{Z}} P_{\mathcal{A}(x,H)} x \|$$



If $\mathcal{H}G$ is single-valued and uniformly continuous then it is geometrically compatible

Convergence

Theorem

- ▶ $G: \mathbb{R}^n \to \mathbb{R}^m$ is uniformly Newton differentiable on \mathcal{Z} with $\mathcal{H}G$ and Lipschitz
- $ightharpoonup \mathcal{Z} := \{x \mid G(x) = 0\} \neq \emptyset$, $P_{\mathcal{Z}}$ is Lipschitz
- ▶ $\sup_{x \in U \in \mathcal{V}(\bar{x})} \sup_{H \in \mathcal{H}G(x)} \|H^+\| \leq \Omega$ and H full rank
- $ightharpoonup \mathcal{H}G$ is geometrically compatible

Then the Newton-type method approaches $\mathcal Z$ superlinearly for any x^0 close enough to $\mathcal Z$

$$\lim_{k\to\infty}\frac{\operatorname{dist}(x^{k+1},\mathcal{Z})}{\operatorname{dist}(x^k,\mathcal{Z})}=0$$

Constraints

Given $G: \mathbb{R}^m \to \mathbb{R}^n$ Newton differentiable with $\mathcal{H}G$ Find, $\bar{x} \in K$, K close and convex

$$G(\bar{x}) = 0$$
 (CUDE)

Denote
$$\mathcal{Z} = \{x \mid G(x) = 0\}, \mathcal{K} = K \cap \mathcal{Z}$$

Algorithm: $\mathcal{M}: \mathbb{R}^m \rightrightarrows \mathbb{R}^m$,

$$\mathcal{M} = \mathsf{P}_{\mathsf{K}} \circ \mathcal{M}$$

Using non-expansiveness of P_K , $y \in \mathcal{N}(x)$

$$\operatorname{dist}(\mathsf{P}_{\mathcal{K}}\,y,\mathcal{K}) \leq \|\,\mathsf{P}_{\mathcal{K}}\,y - \mathsf{P}_{\mathcal{K}}\,x\| \leq \|y - \mathsf{P}_{\mathcal{K}}\,x\| \leq c\|x - \mathsf{P}_{\mathcal{K}}\,x\|$$

Back to Multi-objective

Problem

Find, $\bar{x} \in \mathbb{R}^m, \bar{\sigma} \in \Delta^n$

$$\bar{\sigma}^T \nabla F(\bar{x}) = 0$$
 (FOE)

Denote
$$K = \mathbb{R}^m \times \Delta^n$$
, $\mathcal{K} = \{x, \sigma \mid \sigma \in \Delta^n, \sigma^T \nabla F(x) = 0\}$

Assume: ∇F is uniformly Newton differentiable on \mathcal{Z} with $\mathcal{H}F$

Algorithm: $H^k \in \mathcal{H}F(x^k)$

$$\begin{bmatrix} \mathbf{x}^{k+1} \\ \sigma^{k+1} \end{bmatrix} = \mathsf{P}_{K} \left(\begin{bmatrix} \mathbf{x}^{k} \\ \sigma^{k} \end{bmatrix} - \begin{bmatrix} \sigma^{k} {}^{T} H^{k} & \nabla F(\mathbf{x}^{k}) \end{bmatrix}^{+} \sigma^{k} {}^{T} \nabla F(\mathbf{x}^{k}) \right)$$

Main Result

Theorem

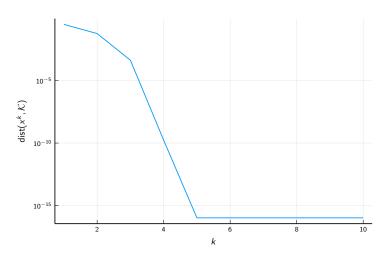
- ▶ $F: \mathbb{R}^n \to \mathbb{R}^m$ is uniformly Newton differentiable on \mathcal{Z} with $\mathcal{H}F$ and Lipschitz
- $\triangleright \ \mathcal{Z} := \{x, \sigma \mid \sigma^T \nabla F(x) = 0\} \neq \emptyset$, $P_{\mathcal{Z}}$ is Lipschitz
- ▶ $\sup_{x \in U \in \mathcal{V}(\bar{x})} \sup_{H \in \mathcal{H}G(x)} \|H^+\| \leq \Omega$ and H full rank
- ► *HF* is geometrically compatible

Then the Newton-type method approaches $\mathcal{Z} \cap \mathbb{R}^m \times \Delta^n$ superlinearly for any x^0 close enough to \mathcal{Z}

$$\lim_{k\to\infty}\frac{\operatorname{dist}(x^{k+1},\mathcal{Z}\cap\mathbb{R}^m\times\Delta^n)}{\operatorname{dist}(x^k,\mathcal{Z}\cap\mathbb{R}^m\times\Delta^n)}=0$$

Numerical Example

$$F(x) = [x_1^2 - x_2, x_2], \quad \mathcal{K} = \{0\} \times \mathbb{R} \times \{.5\} \times \{.5\}$$



Thank you!